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Abstract— In this paper, we explore the challenge of gener-
ating animal-like walking motions for legged robots. To this
end, we propose a versatile and robust control pipeline that
combines a state-of-the-art model-based controller with a data-
driven technique that is commonly used in computer animation.
We demonstrate the efficacy of our control framework on
a variety of quadrupedal robots in simulation. We show, in
particular, that our approach can automatically reproduce
key characteristics of animal motions, including speed-specific
gaits, unscripted footfall patterns for nonperiodic motions, and
natural small variations in overall body movements.

I. INTRODUCTION

Today’s quadrupedal robots can perform highly dynamic
and agile motions: running [1], jumping [2], backflipping [3],
and even dancing [4]. Nevertheless, despite their remarkable
maneuverability, their movements are arguably stiff and
oftentimes lack the subtle nuances that can easily be observed
in animals. As an example, during typical locomotion tasks,
most quadrupedal robots today tend to follow unnaturally
symmetric and regular movement patterns – constant body
height, constant forward velocity, military-style trotting gaits,
etc. Such motion features can make robots appear stereotyp-
ically lifeless and mechanical [5].

Our long-term goal is to make the motions generated by
robots appear more natural and organic [6]. To achieve this,
we present an approach that combines character animation
techniques with a state-of-the-art model-based motion con-
troller architecture. More specifically, the control pipeline
we explore is composed of four different stages. First, we
adapt data-driven computer animation tools, namely motion
matching [7]–[9] and inertialization [10], to generate an
appropriate footfall pattern based on high-level commands
such as the robot’s desired moving speed and turning rate.
Then, we generate kinematic reference trajectories for the
base and feet by leveraging motion capture data and the well-
known Raibert heuristic [11]. These reference trajectories
are used as a goal for a model predictive controller which
operates on a simplified dynamics model of the robot.
Finally, joint-level commands are generated using an inverse
dynamics-based whole-body controller.

We experimentally validate our control framework in a
simulation environment using the Open Dynamics Engine
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Fig. 1: A dog gait recorded by a motion capture system (left),
reproduced by the quadrupedal robot Aliengo [12] (right).

[13] and apply our technique to various commercially avail-
able robot models [12], [14], [15]. We show that without
needing precomputation or off-line policy learning, physi-
cally simulated robots can generate a variety of periodic and
nonperiodic gaits. These gaits and gait transitions emerge
naturally as a consequence of user-specified high-level goals.
Unlike previous related efforts [16], these behaviors are
entirely unscripted.

II. RELATED WORK

As we aim to produce animal-like motions on legged
robotic systems, our work lies at the intersection of computer
graphics and robotics. Therefore, we introduce a selection
of previous work on quadrupedal locomotion control and
character animation that are most related to our approach.

A. Quadrupedal Locomotion Control

Several model-based control techniques have been vig-
orously studied and successfully demonstrated on various
quadrupedal robot platforms. One method, namely Whole-
body control (WBC), finds optimal desired joint-level forces
that minimize tracking errors for multiple target accelerations
while considering the whole-body dynamics and physical
limits of a robot [17]–[20]. This method is dynamically
consistent and computationally efficient, but it often fails
to perform motion involving frequent non-contact phases.
Model predictive control (MPC) can resolve this problem by
addressing a long-time horizon optimal control. It anticipates
the results of the robot’s actions and finds an optimal control
input for a longer time horizon, at the cost of higher compu-
tational complexity [21]–[24]. More recently, combinations
of MPC-WBC have been proposed to take benefits of both
methods [25], [26]. In this approach, MPC solves a long-time
horizon optimal control problem with a simplified model,
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Fig. 2: Control pipeline overview. The individual stages (in blue) input and output different parameters (in black). The
chosen methods are presented in green. Each stage is graphically visualized below the block diagram.

and WBC tracks MPC output with a whole-body dynamics
model. This hierarchical structure is a simple yet effective
solution for versatile and dynamic legged locomotion.

An alternative avenue of model-based control is learning-
based control, which creates controllers in a data-driven
fashion. Several research works propose pipelines to learn
a policy for robust quadrupedal locomotion in simulated
environments from scratch by applying numerous trial-and-
error runs that can later be applied in the real world [27]–
[29]. Meanwhile, Peng et al. [30] propose a method that
utilizes motion capture data of a dog to learn policies that
imitate a dog’s motor skills.

In this work, we choose a model- over a learning-based
approach since our goal is to apply our method to vari-
ous quadrupedal robots. Model-based control provides more
flexibility, as it does not need a time-consuming training
procedure for each platform. Specifically, we integrate the
combination of MPC-WBC in a similar manner to Kim et
al. [25]. Our controller is versatile, and can perform various
gait patterns without requiring a behavior-specific policy or
gain tuning.

B. Character Animation

In our quest to generate animal-like motions, we turn to
the graphics community, which has performed considerable
work in this area. In this field of research, it is common to
use prerecorded motion capture or image data to generate
motions that follow a user’s high-level command. Clavet
[7] introduces a simple data-driven method called motion
matching, which generates sequences of character move-
ments from a motion capture dataset. It finds a new motion
sequence by searching the entire database for the closest
match with respect to predefined features. Alternatively,
Zhang et al. [31] leverage deep neural networks to directly
learn underlying patterns of a motion dataset, then the trained
neural network is used to generate new motion sequences for
a quadrupedal character. These approaches generate motions
without considering physical laws and thus require additional
steps for transfer to real systems.

This gap between the kinematic and the physical world
has been addressed by physically based animation techniques
[32]–[34]. The main idea is to learn control policies that
track kinematic target motions in a simulated physical en-
vironment. Consequently, the resulting motions of virtual
agents are not only physically plausible but also have the
potential to be transferred to real systems [30]. We note that
many physically based animation methods focus on imitating
a specific motion clip. In contrast, we aim to build a control
pipeline responsive to a user’s high-level command. There-
fore, we leverage the motion matching technique to generate
a target motion on the kinematic level and then transfer it
to the physical world as Bergamin et al. propose [9]. Our
method can seamlessly switch between different gaits based
on the input base velocity without a dedicated mechanism.
The distinction between their work and ours is that we extract
only semantic information from the target motion instead of
tracking joint trajectories of the target motion. We use these
semantics to create reference trajectories that our model-
based controller can track. In so doing, we can transfer
animal motions to a robot despite the discrepancy between
the animal and the robot’s morphology.

III. CONTROL PIPELINE

We present a control pipeline that takes speed commands
for the robot’s base and a motion dataset as inputs and
outputs torque commands for its motors. This pipeline con-
sists of four different stages, as described in Fig. 2. In the
following subsections, we discuss the methods chosen for
the last three stages. The gait planning method is presented
in section IV.

A. Reference Trajectory Generation

This stage takes inputs from the gait planner and generates
reference trajectories for the robot’s base and feet. The
base trajectory, consisting of six degrees of freedom (three
translational and three rotational) per timestep, is constructed
given the forward, sideways, and turning speed profile from
the previous stage using numerical integration. Meanwhile,



the feet trajectories are generated by linear interpolation
between the step locations. These footstep locations for
the individual feet are chosen using the robot’s kinematics
and the Raibert heuristic [11]. This well-known tool for
legged locomotion ensures that an individual foot lands
below the corresponding hip at the middle of the stance phase
with the duration of tstance, assuming the robot is moving
with constant velocity vcur. When the robot is required to
accelerate to follow a given command velocity vcmd, the
heuristic adjusts the footstep by a feedback term kraibert that
scales the significance of the velocity error. In addition, a
centrifugal term is added to generate smoother trajectories
under angular velocity command ωcmd [25]. In summary, the
foot step location ri for foot i is

ri = phip,i + 0.5 tstancevcur

+ kraibert (vcur − vcmd)

+ kcentrifugal vcur ×wcmd,

(1)

where phip,i represents the corresponding hip position in
world coordinates. We choose the individual gains as
kraibert =

√
h/g and kcentrifugal = 0.5

√
h/g where h is the

base height and g is gravitational acceleration.

B. Online Trajectory Optimization

Since the reference trajectories for the base and feet
are generated using kinematic information only, they do
not consider any dynamic effects arising from the robot’s
movements. This can lead to poor performance in tracking
the base trajectory and cause the robot to lose its balance and
fall over, as the target motion involves frequent underactu-
ated configurations. We therefore need a control stage that
matches the input reference trajectories as closely as possible
while ensuring that they remain feasible for the robot to
track. To achieve this, we apply an MPC scheme. This
technique considers a dynamics model of the robot instead
of relying on kinematic information only. Furthermore, it
predicts the robot’s behavior over a long-time horizon, and
leads to a more robust control execution that can handle
underactuated configurations as well. We observe that animal
gaits are typically highly skewed, which is why transferring
these gaits to a robot requires a robust control strategy.

We choose the MPC approach presented by Di Carlo
et al. [23] and Kim et al. [25] for our implementation. It
approximates the model of the robot into a single lump mass
so that its dynamics can be linearized under the following
assumptions: first, both roll and pitch angles of the base are
small, second, the robot states are always reasonably close to
the commanded trajectory. With the linear model, the MPC
finds an optimal base trajectory x and the ground reaction
forces of the feet f for a given discrete time horizon m. This
problem is formulated as a convex quadratic program (QP)
where the global optimal solution can be found efficiently.
Note that this MPC formulation does not solve for foot
trajectories since optimization over foot placement in com-
bination with ground reaction forces results in a non-convex
problem [21], [22], [35] which slows down the computation

significantly and tends to get stuck in an undesirable local
minimum.

The described MPC formulation can be written as

min
x,f

m∑
i=0

∥∥x(k + 1)− xref(k + 1)
∥∥
Q

+ ‖f(k)‖R (2a)

s.t. x(k + 1) = Akx(k) + Bkf(k) + ĝ (2b)
|fx| ≤ µfz, |fy| ≤ µfz, fz > 0 (2c)
fmin ≤ f ≤ fmax (2d)
φmin ≤ φ ≤ φmax, θmin ≤ θ ≤ θmax (2e)

where we optimize for a discrete time horizon of m steps.
The objective (2a) is to match the base trajectory x with its
reference and keep the ground reaction forces f small. The
linearized lump mass dynamics are included as a constraint in
(2b). Furthermore, the Coulomb friction cones for all the feet
in contact with the ground are modeled in (2c) and limited
by (2d). We ensure that the assumption of small roll φ and
pitch θ angles is not violated by including the constraint (2e).

After finding the optimal ground reaction force and base
trajectory predictions, we linearly interpolate the base trajec-
tory while assuming that the ground reaction force remains
constant within one timestep ∆tMPC. The resulting base
trajectory xMPC and ground reaction forces fMPC are used as
targets for the whole-body controller we describe in section
III-C.

C. Inverse Dynamics

As a final step of the control pipeline, we generate joint
torque commands by solving an inverse dynamics problem.
In this stage, a robot controller needs to fulfill the require-
ment of running at high-frequency rates (typically over 200
Hz) to allow the robot to perform dynamic maneuvers.
In addition, it needs to take into account the whole-body
dynamics of the robot to ensure high accuracy. One control
method that meets these requirements is whole-body control
(WBC) [17]–[20].

Our WBC is formulated as a convex quadratic program to
allow short computation times. The most noticeable differ-
ence to equation (2) is the dynamics model which is replaced
by the whole-body dynamics of the robot. Additionally, the
problem only has to be solved for one control timestep
∆tWBC. The whole-body dynamics model is parameterized
using generalized accelerations, joint torques and ground
reaction forces, which we denote in the following by q̈, τ
and f , respectively.

min
q̈,τ ,f

∥∥â(q̈)− âcmd
∥∥
Q1

+
∥∥f − fMPC

∥∥
Q2

(3a)

s.t. M(q)q̈ + b(q, q̇) + g(q) = ST τ + JT f (3b)
|fx| ≤ µfz, |fy| ≤ µfz, fz > 0 (3c)
fmin ≤ f ≤ fmax (3d)
τmin ≤ τ ≤ τmax. (3e)



The optimization variables include q̈, τ and f . The equal-
ity constraint (3b) is the equation of motion of the whole-
body dynamics model. We reintroduce the force limits in (3c)
and (3d). Additionally, we add joint torque limit constraints
based on the robot’s physical limitations with (3e). The
objective (3a) consists of two quadratic penalties. The first
term matches accelerations of the base and the feet with
target acceleration commands, and the second one matches
ground reaction forces with those we obtained from the MPC
stage. The acceleration vector

â = [abase,afoot,1, ...,afoot,ne
] ∈ Rne×3+6 (4)

is a concatenated vector of the base acceleration abase ∈ R6

and ne feet accelerations afoot,i ∈ R3. abase is the first six
elements of generalized acceleration q̈, and the acceleration
of foot i is computed by afoot,i = J̇iq̇ + Jiq̈, where Ji is a
Jacobian matrix of foot i.

The target acceleration commands are computed using
implicit PD control, which can be written as

acmd = −kp(p− ptarget) + ∆tkd(ṗ− ṗtarget) + ∆tkpṗ

1 + ∆t2kp + ∆tkd
,

(5)
where ∆t is the control timestep size of WBC, ptarget and
ṗtarget are the pose and velocity targets respectively. For
the base, the targets are generated from the base trajectory
prediction xMPC by MPC. For the feet, the targets come
from the reference foot trajectories from the second stage
described in section III-A. The latter is reused under the
assumption that the base pose sequence generated by MPC is
reasonably close to the previously generated reference base
trajectory. Therefore, recreating the foot trajectories using
the foot placement rule, equation (1), can be avoided. As a
final result of this stage, we find torque commands τ ? that
minimize the tracking error and send them to the robot.

IV. GAIT PLANNING USING MOTION MATCHING

This section presents our gait planning strategy based on
a simple data-driven method called motion matching [7]–
[9]. We integrate it into our legged robot control pipeline
as the key component for generating biological motions
for quadrupedal robots. As depicted in Fig. 2, the planner
takes a user’s target speed command (forward, sideways,
and turning) and motion data of real animals as inputs, and
outputs semantic information that encodes key characteristics
of an animal’s motion. More precisely, we extract a footfall
sequence, a base height profile, and a base speed profile. A
base height and a speed profile entail an animal’s inconsistent
moving speed as well as light up-and-down and left-and-
right body offsets during a gait cycle. Furthermore, a footfall
sequence defined by timings of steppings and durations of
swings can effectively encode the aperiodicity and asymme-
try of animal gaits. These components are then passed on
to the next stage of the control pipeline and embedded into
reference trajectories (see section III-A). We will now discuss
the individual aspects of this procedure in more detail. An
overview of the individual steps is given in Fig. 3.

Current character motion Queried new motion

Blended motionScaled motion

Fig. 3: Gait planning consists of several steps. Using the
current character motion and the user input (top left), a new
motion sequence is queried from the database (top right). To
ensure a smooth transition, inertialization blending is applied
(bottom right). Afterwards, we extract footfall sequence and
base height/speed profile from blended motion. The base
height/speed profile is scaled for the robot (bottom left).

A. Motion Matching

The main idea of motion matching is the following: given
the current state of a character and a user’s target input, it
finds the best matching motion sequence from the dataset
to playback. We will now formulate this procedure for our
use case. Imagine we have a raw dataset consisting of
nc individual motion clips. We use this to build a list of
reference motions for each individual motion clip Yi =
[y1, ...ynf,i

],∀i ∈ 1, ..., nc, where nf,i denotes the number
of frames for motion clip i, and yj is the state of the
character at the jth frame. We define the character’s state
using generalized coordinates and velocities q and q̇, and
therefore yj = [q, q̇]. Note that if the dataset contains pose
data only, we compute the generalized velocities q̇ using the
finite-difference method.

From yj , we extract the corresponding motion feature
vector zj as described in [8] but modify the definition for
quadrupedal characters as

zj = [p̃20, p̃40, p̃60, h̃20, h̃40, h̃60, r, ṙ, ṗ,φ] ∈ R43, (6)

where p̃20, p̃40, p̃60 ∈ R2 are future ground-projected
positions of the character after 20, 40, 60 frames, h̃20, h̃40,
h̃60 ∈ R2 are future ground-projected heading vectors of the
character, r ∈ R12 and ṙ ∈ R12 are positions and velocities
of the feet, ṗ ∈ R3 is the base velocity, and φ ∈ {0, 1}4
is the contact state of all four feet, where 0 and 1 indicate
swing and stance, respectively. All the position and vector
entities are expressed in the character’s coordinate frame.

We use this information to build a set of motion feature
vectors Zi = {z1, ..., znf,i−61} for each motion clip i. As we
use frame j to j+60 to build zj , we receive nf,i−61 feature
vectors. After repeating this process for the entire dataset, we
end up with two databases: an animation database Y , which
is a set of lists Yi, and a matching database Z =

⋃nc

i=1 Zi,
which denotes a union set of Zi. As a final step, we normalize
each feature vector by the mean and the standard deviation of



the entire database. This allows us to use euclidean distances
for comparing individual feature vectors.

At runtime, for every N frames (defined in Table I) we
build a query vector ẑ from the current state of the character
and the user command. The future ground-projected posi-
tion and heading vectors of ẑ are computed by numerical
integration of a user command. The query vector is used
to retrieve the best matching feature vector z? in Z in
terms of minimizing the euclidean distance with respect to
ẑ. Based on z?, the corresponding character state y? and its
Nh subsequent states can be retrieved from Y . Note that it
is not desirable to perform this process for every planning
timestep since it may cause cycling over the same motion
and increase the computational burden [9]. We use N = 30
that corresponds to 0.5 sec.

B. Inertialization Blending

The new motion sequence found from the database does
not necessarily tie in smoothly with the character’s currently
executed movements. In cases where we have to stitch two
nonconsecutive motion sequences together, the transition
between the previously played and the new sequence can
be significantly discontinuous. Such discontinuity can cause
a glitch in the overall target motion. As a result, the extracted
information can be unsuitable for the control pipeline, as it
most often leads to unstable robot locomotion. To resolve
this problem, the transition between the old and the new
sequence needs to be smoothed out. Once more, we rely on
an established blending tool from computer graphics called
inertialization [10]. The basic idea behind this technique
is that it transitions the character’s movements from one
sequence to another by interpolating its base and joint states
using a fifth-order polynomial [36]. We have found this
approach suitable for our application as well, as it results
in smooth base speed and height profiles while generating
suitable footfall sequences.

C. Transfer to Robot

After finding a suitable motion sequence for a quadrupedal
character, we need an additional step to transfer this motion
to a robot. This is because robots typically have a different
morphology and actuation power than animals. Therefore,
we extract only semantics of the character motions, namely
a base speed and a height profile, as well as a foot fall
sequence. This choice allows us to use simple scaling on
speed and height profiles according to dimensions of the
robot. Choosing a suitable scale factor may involve many
properties to be considered, such as limb lengths, body
dimensions, mass properties, and actuation power. Instead
of building these relations, we consider this factor a tuning
parameter, as we found it to be intuitive and easy to find.

After applying the scaling onto the currently selected
motion sequence, the extracted base speed profiles are fur-
ther processed by a Gaussian and median filter for noise
reduction. In our implementation, we use a Gaussian filter
(filter width 7) for forward and sideways speed and a median
filter (filter width 5) for turning speed. We observe that this

simplifies the tracking of a subsequently generated reference
trajectory for the rest of the control pipeline.

A footfall sequence can be described as a sequence of
pairs of start and end times of a leg swing. In other words,
it describes when a specific leg is in contact with the ground
and when it is in swing. As the motion capture data consists
of sequences of base and joint poses, the footfall pattern
needs to be extracted by thresholding the height and velocity
of the character’s feet. More formally, we consider a foot to
be in swing mode if

‖vfoot‖2> θvelocity and zfoot > θheight, (7)

where the specified thresholds for height and velocity θheight
and θvelocity, respectively, can be found in Table I. We note
that drift in position and velocity often happens due to
noise in the motion data or foot-skate effects caused by
the inertialization blending [37], which can result in faulty
swing detection. However, we found that in practice, the
consequences are negligible for our application unless the
motion sequence contains highly dynamic maneuvers like
quick turning, hopping, or galloping.

As an additional measure, we include a simple heuristic to
increase the robustness of the control pipeline by introducing
an artificial time shift tshift (see Table I). Specifically, we
generate a gait plan for time t+ tshift at control time t. It en-
sures that our controller does not abruptly switch between a
currently executed and a newly found motion. This ultimately
improves the collaboration between the different stages, as
the locomotion controller is not suddenly interrupted by the
motion matching procedure.

V. RESULTS

We evaluate the efficacy of our control pipeline in sim-
ulation using the Open Dynamics Engine [13] and three
different robotic platforms from Unitree Robotics: A1 [14],
Aliengo, [12] and Laikago [15] are depicted in Fig. 4. We
note that the only parameter that needs to be tuned for
a specific robot model is the scaling factor that is used
to transfer the character motions from the dataset to the
robot (as explained in section IV-C). The experiments are
conducted using an Intel i7-9700K CPU, and the required
parameters are summarized in Table I. We used a motion
capture dataset of a dog available online [31]. As some
sequences of the dataset contain motions that are clearly not
feasible to reproduce on robots, such as sitting on the ground,
jumping, or cantering, we carefully selected 65,498 frames
out of 265,994 frames. In the following, we will present
our findings using some representative motion sequences.
We refer the reader to the accompanying video* for more
detailed visualization of the results.

The setup for all conducted experiments was the same:
A user can first select the preferred robot model and then
introduce real-time target commands for a robot to follow
using a simple GUI. These target commands are forward,
sideways and turning velocity, expressed in a robot’s base

*The video is available in https://youtu.be/6-zTPTL0fJY.

https://youtu.be/6-zTPTL0fJY


coordinate frame. The overall goal is that a robot adapts to
a dog’s natural-looking motions while following the target
commands as closely as possible.

Fig. 5 shows a target motion generated by motion match-
ing and its reproduced version on the Aliengo robot given a
constant forward speed command. The robot started from a
standing configuration and was then given a target forward
speed of 0.8 m/sec. By observing the body trajectories of
the robot (middle, in purple), we can see that the robot is
able to replicate the small up-and-down and left-and-right
body motions that are typically found in quadrupedal animal
movements. As visualized in the supplementary video, this
behavior heavily contributes to making the robot’s move-
ments look more lively. Furthermore, Fig. 5 shows the
footfall sequence that the robot is following. It is nonperiodic
and involves a smooth and natural transition from a walk
to a pace gait [38]. Both these properties stand in contrast
to choosing a fixed, symmetric walking pattern. The visual
differences between these behaviors are highlighted in the
supplementary video.

Fig. 6 depicts a different motion sequence, where the
forward speed command was varied over a range of [0, 0.9]
m/sec, and the robot started again from a standing con-
figuration. Fig. 6(a) shows the velocity target command
(in blue) versus the base velocity resulting from motion
matching (in red) and the robot (in green), where a moving
average filter (with filter width 60) has been used for better
visualization. The plot shows that the robot is able to track
the inputs coming from the gait planner well (the overall
root mean squared error is 0.0656 m/sec). However, there
are some mismatches and delays in comparison to the target
command. This can be explained by the fact that there is a
limited amount of data available. In other words, there is not
necessarily a recorded motion available for every possible
input velocity command. Despite the local mismatches in
base velocity, Fig. 6(c) shows that overall, the target base
position resulting from the velocity command can still be
tracked reasonably well. We visualize the raw velocity data
(i.e. without the moving average filter) in Fig. 6(b). It shows
that animals typically do not move with constant body speed
(in yellow) but rather travel more flexibly. This is the desired
behavior for our application, as it leads to less rigid and
more biological motions. The curve in light green shows
that the robot can replicate this behavior well. Additionally,
the footfall sequence of the robot is depicted in Fig. 6(d).
It is visible that the robot swiftly changes its gait based on
the target base speed. In the range of [0, 0.3] m/sec, the
gait planner generates a slow walking gait that moves the
robot’s feet one by one. As the command speed increases to
[0.3, 0.6] m/sec, the gait is changed to a pace and afterward
seamlessly moves on to a trot for [0.6, 0.9] m/sec. We
observe that the footfall frequency, as well as the duration
ratio of swing to stance phases, increase with higher speed
commands.

TABLE I: Parameters used for the experiments. Note that
robot specific parameters such as joint torque limits are used
as stated in the robots’ datasheets.

Gait planning time horizon Nh 60 (1 sec)
Gait planning time shift tshift 0.5 sec
Base speed profile filter width 5 (turning) / 7 (others)
Reference planner time horizon 0.7 sec
Foot height threshold θheight 0.055 m
Foot velocity threshold θvelocity 0.8 m/sec
Cycle of motion matching N 30
MPC Control Time step ∆tMPC 1/30 sec
MPC time horizon 0.7 sec
MPC max./min. roll and pitch angle ±30deg
MPC max./min. ground reaction force 650 N / 0 N
WBC Control Time step ∆tWBC 1/120 sec
Simulation Time step 1/480 sec

Fig. 4: Using our control pipeline, animal-like motions can
be reproduced by various robot models with different scales
and actuation power. We ran experiments with three robotic
platforms from Unitree: A1 [14] (left), Aliengo [12] (middle)
and Laikago [15] (right).

VI. CONCLUSION AND DISCUSSION

In this paper, we propose a control pipeline that enables
legged robots to perform animal-like motions. It uses a
simple data-driven approach to extract semantic information
from animal motion data and embeds it in reference trajec-
tories. A combination of MPC-WBC can track the reference
trajectories effectively. As the semantic information is not
constrained by morphology, our method can be generally
applied to various quadrupedal robot models despite the
discrepancy between the animal’s and robots’ morphology.
We demonstrated the efficacy of our approach in simulation
using several quadrupedal robot models with different dimen-
sions and form factors. We observed that robots are able to
reproduce key characteristics of animal-like movements such
as subtle body movement variations, as well as nonperiodic
gaits. As an added benefit of our approach, robots are able to
naturally switch between different gaits based on the desired
moving speed.

Our methodology, however, is not without limitations.
First, since motion matching simply searches through the
existing dataset without generating new movements, the
resulting robot motions are limited by the richness of the
motion capture dataset. We observed that the tracking per-
formance of the target commands is highly dependent on
the variety of sequences in the data. This problem can
be addressed by either collecting more data or applying
machine learning methods to extract underlying patterns in
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Fig. 6: Resulting motion behavior when applying a varying forward speed command (in blue) in the range of [0, 0.9] m/sec.
The first two plots show the velocity profile with (a) and without (b) a moving average filter. The resulting position tracking
is depicted in (c). (d) shows the executed footfall sequence.

the dataset [31]. Second, we noticed that foot-skating effects
can occur during the motion matching phase, and these can
result in infeasible footfall sequences that cannot be robustly
handled by the locomotion controller. This is mainly due to
the inertialization blending, which can propagate drift along
the limbs. In practice, this is hardly problematic for slow
and mid-range speed walking. However, for fast-moving or
turning behaviors, the resulting foot-skate can be significant,
which renders the foot velocity thresholding unsuitable for
finding an appropriate footfall sequence. The graphics com-
munity has addressed this problem in the context of character

animation [37], [39]. How these techniques can be adopted
for our framework is part of future investigations.

Our immediate next step is to improve the control pipeline
by addressing the aforementioned problems, and to deploy
it on robots for hardware testing and validation. Our control
pipeline is sufficiently efficient to be run in real-time, and the
combination of MPC-WBC has already been demonstrated
to run robustly on real-world robots [25]. Thus, we expect
that our method can be successfully applied to hardware in
the near future.



REFERENCES

[1] H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding with
the mit cheetah 2: Control design and experiments,” The International
Journal of Robotics Research, vol. 36, no. 2, pp. 167–192, 2017.

[2] Q. Nguyen, M. J. Powell, B. Katz, J. Di Carlo, and S. Kim, “Optimized
jumping on the mit cheetah 3 robot,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 7448–7454.

[3] B. Katz, J. D. Carlo, and S. Kim, “Mini Cheetah: A Platform for
Pushing the Limits of Dynamic Quadruped Control,” in 2019 Inter-
national Conference on Robotics and Automation (ICRA). Montreal,
QC, Canada: IEEE, May 2019, pp. 6295–6301.

[4] E. Ackerman, “How Boston Dynamics Taught Its Robots to Dance -
IEEE Spectrum,” Jan. 2021.

[5] S. Varghese, “Welcome to the Uncanny Valley: how creepy robot dogs
are on the rise - The New Statesman,” Feb. 2018.

[6] Z. Li, C. Cummings, and K. Sreenath, “Animated cassie: A dynamic
relatable robotic character,” in 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, pp. 3739–3746.

[7] S. Clavet, “Motion matching and the road to next-gen animation,” in
Proc. of GDC, 2016.

[8] D. Holden, O. Kanoun, M. Perepichka, and T. Popa, “Learned motion
matching,” ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp.
53–1, 2020.

[9] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, “Drecon:
data-driven responsive control of physics-based characters,” ACM
Transactions On Graphics (TOG), vol. 38, no. 6, pp. 1–11, 2019.

[10] D. Bollo, “High performance animation in Gears of War 4,” in ACM
SIGGRAPH 2017 Talks. Los Angeles California: ACM, Jul. 2017,
pp. 1–2.

[11] M. H. Raibert, H. B. Brown Jr, and M. Chepponis, “Experiments in
balance with a 3d one-legged hopping machine,” The International
Journal of Robotics Research, vol. 3, no. 2, pp. 75–92, 1984.

[12] Unitree Robotics, “Aliengo,” https://www.unitree.com/products/
aliengo.

[13] R. Smith et al., “Open dynamics engine,” 2005.
[14] Unitree Robotics, “A1,” https://www.unitree.com/products/a1.
[15] ——, “Laikago pro,” https://www.unitree.com/products/laikago.
[16] C. Gehring, S. Coros, M. Hutter, M. Bloesch, P. Fankhauser, M. A.

Hoepflinger, and R. Siegwart, “Towards automatic discovery of agile
gaits for quadrupedal robots,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2014, pp. 4243–4248.

[17] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast,
robust quadruped locomotion over challenging terrain,” in 2010 IEEE
International Conference on Robotics and Automation. IEEE, 2010,
pp. 2665–2670.

[18] M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch,
and R. Siegwart, “Quadrupedal locomotion using hierarchical opera-
tional space control,” The International Journal of Robotics Research,
vol. 33, no. 8, pp. 1047–1062, 2014.

[19] C. D. Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and M. Hut-
ter, “Perception-less terrain adaptation through whole body control
and hierarchical optimization,” in 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids). IEEE, 2016, pp.
558–564.

[20] S. Fahmi, C. Mastalli, M. Focchi, and C. Semini, “Passive whole-body
control for quadruped robots: Experimental validation over challenging
terrain,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2553–2560, 2019.
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